STATE OF NEW HAMPSHIRE

PUBLIC UTILITIES COMMISSION

DG 08-009

36 - Secretario de descripción de la constante de la constan

vitne

In the matter of

National Grid NH

Docket No. DG 08-009

COST-OF-EQUITY DIRECT TESTIMONY

OF

George R. McCluskey Utility Analyst, Electric Division

October 31, 2008

1		
2		
3 4 5 6		STATE OF NEW HAMPSHIRE BEFORE THE PUBLIC UTILITIES COMMISSION
7 8 9 10	EnergyNorth Natural Gas, Inc. d/b/a National Grid NH) Petition for Permanent Increase in Delivery Rates Docket No. DG 08-009	
12		
13 14 15 16		DIRECT TESTIMONY OF GEORGE R. McCLUSKEY
17	I.	INTRODUCTION
18	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
19	A.	My name is George McCluskey, and my business address is the New
20		Hampshire Public Utilities Commission ("NHPUC"), 21 South Fruit Street,
21		Suite 10, Concord, NH 03301.
22		
23	Q.	WHAT IS YOUR POSITION WITH THE NHPUC?
24	A.	I am an analyst within the Electric Division. I also assist the staff of the Gas &
25		Water Division on gas-related policy issues.
26		
27	Q.	HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE COMMISSION ON
28		GAS-RELATED ISSUES?

1	A.	Yes, on several occasions.
2		
3	Q.	PLEASE DESCRIBE YOUR EDUCATION AND YOUR BUSINESS
4		EXPERIENCE.
5	A.	I am a ratemaking specialist with over 20 years experience in utility economics.
6		I rejoined the NHPUC in March 2005 after working as a consultant for La
7		Capra Associates, a Boston-based consulting firm that specializes in electric
8		industry restructuring, wholesale and retail power procurement, and market
9		price and risk analysis. Prior to joining La Capra Associates, I directed the
10		electric utility restructuring division of the Commission and before that was
11		manager of least cost planning at the Commission, directing and supervising the
12		review and implementation of electric utility least cost plans and demand-side
13		management programs. I have participated in electric and gas restructuring-
14		related activities in New Hampshire, Arkansas, Pennsylvania, California and
15		Ohio. A copy of my resume is included as Exhibit GRM-1.
16		
17	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS
18		PROCEEDING?
19	A.	My testimony addresses three issues. First, I present the results of my
20		investigation into the EnergyNorth Natural Gas d/b/a National grid NH
21		("ENGI" or "Company") lead/lag studies that support the cash working capital
22		allowance proposed for delivery-related service. Those studies, which relate to

delivery-related and supply-related costs and revenues, were filed initially on

1		February 25, 2008 by Gary Goble of Management Applications Consulting, Inc.
2		("MAC") on behalf of the Company. On April 23, 2008, Mr. Goble filed
3		supplemental testimony that revised the results of both studies. I then comment
4		on the marginal cost study filed February 25, 2008 by Mr. Goble. Finally, I
5		address the rate design proposals submitted by Mr. Goble, which are based on
6		the results of his marginal cost study.
7		
8	Q.	PLEASE EXPLAIN WHY YOU ADDRESS SUPPLY-RELATED ISSUES IN
9		A PROCEEDING DEDICATED TO THE ESTABLISHMENT OF
10		DELIVERY RATES?
11	A.	Although the Commission opened this docket to review ENGI's request to
12		establish delivery rates for natural gas service, Mr. Goble has proposed a
13		method to calculate delivery-related cash working capital that involves the net
14		lag for supply-related costs. As regards that supply-related net lag, my
15		testimony recommends for the purpose of establishing delivery rates: (i)
16		adoption of an alternative revenue lag; and (ii) adoption of the proposed
17		expense lead. For the purpose of establishing COG rates, I recommend that the
18		Commission require the Company to update its supply-related lead/lag study
19		every three years.
20		
21	Q.	BEFORE YOU BEGIN YOUR CRITIQUE OF MR. GOBLE'S TESTIMONY,
22		PLEASE SUMMARIZE YOUR CONCLUSIONS.

A. My conclusions are summarized as follows:

(1) Mr. Goble overstates ENGI's cash working capital requirement in
three significant ways. First, Mr. Goble improperly includes non-cash in
his lead/lag study. Non-cash expenses do not create a requirement for
cash working capital. The non-cash expenses that are improperly included
are depreciation expense and uncollectible accounts expense. Second, Mr.
Goble's lead/lag study improperly sets the lead associated with income for
return at zero days. Third, Mr. Goble omitted to take into account the
expected improvement in collections performance when calculating
ENGI's revenue lag.
(2) Correcting for these errors produces a lower delivery-related net lag
that corresponds to a cash working capital requirement of \$1,547,211,
approximately \$2.5 million less than proposed.
(3) The supply-related cash working capital should be \$3,713,586 based
on a net lag of 10.18 days. This is approximately \$0.73 million less than
proposed.
(4) Despite several errors in the calculation of marginal capacity and
customer costs, the results of Mr. Goble's marginal cost study provide
sufficient support for changing rate class revenue requirements and re-
designing rates.
(5) Mr. Goble's proposal to limit the maximum rate increase for any rate
class to 125% of the proposed overall increase is reasonable given the
need for rate stability.

1 (6) Mr. Goble's proposed rate re-design results in an unfair apportionment 2 of the target revenue requirement for each rate class. To reduce customer 3 bill impacts, customer charges should be lower than proposed and 4 declining block rate structures should be replaced with flat rates. 5 6 П. DELIVERY-RELATED CASH WORKING CAPITAL 7 WHAT IS DELIVERY-RELATED CASH WORKING CAPITAL? Q. 8 Delivery-related cash working capital is the amount of investor supplied capital A. 9 needed to fund the timing difference between a utility's payment of delivery-10 related expenses and its receipt of delivery-related revenues from customers. If 11 payment of expenses occurs before the receipt of revenues, there is a positive 12 cash working capital need. Likewise, if payment of expenses occurs after 13 revenues are received, there is a negative cash working capital need. The 14 allowance for delivery-related cash working capital in rates is intended to 15 compensate the utility for the cost to finance the investor supplied working 16 capital. 17 18 Q. IS THIS ALLOWANCE COLLECTED THROUGH DELIVERY RATES OR 19 THE COST OF GAS? 20 A. Delivery-related cash working capital is typically an addition to distribution rate 21 base and, therefore, the associated financing cost or return on capital is collected

22

23

through delivery rates.

1	Q.	WHAT DETERMINES THE AMOUNT OF DELIVERY-RELATED CASH
2		WORKING CAPITAL TO BE INCLUDED IN RATE BASE?
3	A.	Because cash working capital is not recorded in a utility's books, the amount
4		included in rate base must be quantified using a detailed lead/lag study. 1 A
5		lead/lag study is a systematic analysis of a utility's cash flows for the purpose of
6		determining the average net time lag or lead, expressed in days, for a particular
7		service. Such studies are comprised of two major components: the calculation
8		of a revenue lag, which is defined as the average number of days between the
9		provision of service to customers and the collection of the related revenues; and
10		the calculation of an expense lead, which is defined as the average number of
11		days between the receipt of goods or services supplied by vendors/contractors
12		and the payment for such goods and services. The net of these two quantities is
13		divided by the number of days in the year to produce a ratio that is then
14		multiplied by the corresponding annual expense ² to produce the utility's cash
15		working capital requirement.
16		
17	Q.	YOU DEFINED A LEAD/LAG STUDY AS A SYSTEMATIC ANALYSIS
18		OF A UTILITY'S CASH FLOWS. DOES THIS ANALYSIS COVER ALL
19		DELIVERY-RELATED COST OF SERVICE ITEMS?
20	A.	No. As noted above, cash working capital is defined as the amount of investor

supplied capital needed to fund the delay between the payment of expenses and

¹ The amount to be included in rate base can also be determined using a formula method. The most common method is referred to as the 45-day formula.

² That is, the supply-related expense if the net lag corresponds to commodity service or the non-supply-

related costs and expenses if the net leg corresponds to delivery service.

the receipt of associated revenues. It follows, therefore, that if a delivery-	
related cost of service item does not involve current cash expenditures, for	r
example, depreciation and uncollectible accounts, it cannot contribute to t	he
need for cash working capital. Accordingly, lead/lag studies should exclu	ıde
such non-cash expense items.	

7 Q. DID MR. GOBLE USE A LEAD/LAG STUDY TO CALCULATE THE CASH

WORKING CAPITAL THAT ENGI PROPOSES TO INCLUDE IN RATE

9 BASE?

A. Mr. Goble conducted two separate lead/lag studies to derive this amount. One study calculated the net lag for the test year total revenue requirement (i.e., the sum of supply-related and delivery-related revenue requirements). A second study calculated the net lag for the test year supply-related revenue requirement only. Based on these studies, Mr. Goble derived a delivery-related cash working capital requirement of \$4,127,997. This amount corresponds to a net lag of 31.56 days.

Q. DO YOU HAVE ANY CONCERNS REGARDING THE LEAD/LAG STUDY FOR THE TOTAL REVENUE REQUIREMENT?

20 A. I have several concerns, some of which relate to the development of the average
21 expense lead and some to the development of the average revenue lag. My
22 comments relating to the average expense lead are presented in the remainder of

³ See Attachment GLG-LL-3, Page 1, line 52.

1		this section. My comments relating to the average revenue lag are presented in
2		the next section, which addresses Mr. Goble's supply-related lead/lag study.
3		
4	Q.	BEFORE YOU DISCUSS YOUR EXPENSE RELATED CONCERNS,
5		PLEASE SUMMARIZE THE RESULTS OF THE COMPANY'S LEAD/LAG
6		STUDY FOR THE TOTAL REVENUE REQUIREMENT.
7	A.	The study produced an average revenue lag of 51.12 days and an average
8		expense lead of 33.82 days, resulting in net lag of 17.30 days. ⁴
9 10	1.	Expense Lead
11	Q.	PLEASE IDENTIFY YOUR CONCERNS ABOUT THE CALCULATION OF
12		THE AVERAGE EXPENSE LEAD.
13	A.	I have two primary concerns. One relates to the inclusion in the lead/lag study
14		of non-cash items - depreciation expense and uncollectible accounts expense.
15		The other relates to the calculation of expense leads for net income and short-
16		term debt.
17		
18	Q.	WHY DOES THE INCLUSION OF NON-CASH ITEMS IN THE LEAD/LAG
19		STUDY RAISE A CONCERN?
20	A.	As explained above, non-cash expense items are components of the cost of
21		service that do not involve current cash expenditures. As such, they cannot
22		influence a utility's need for cash working capital and, therefore, should have no
23		effect on the outcome of a lead/lag study. However, in Mr. Goble's lead/lag

⁴ See Attachment GLG-LL-3, Page 1.

study for total revenue requirements (see Attachment GLG-LL-3, Page 1 to his
Supplemental Testimony) depreciation expense and uncollectible accounts
expense each have a revenue lag of 51.12 days and each are assigned ar
expense lead of zero days, producing a net lag of 51.12 days. This net lag
however, is more than 37 days longer than the average net lag for all cash items
Thus, even though non-cash items involve no current cash expenditures
including them in the lead/lag study raises ENGI's average net lag and, in turn
increase its cash working capital requirement. This is an illogical result and
clearly highlights a fundamental flaw in Mr. Goble's lead/lag study.
The same conclusion can be reached by comparing the net lags for individual
non-cash items with the net lags for individual cash items, which Exhibit GRM-
2 ⁵ does. The exhibit shows that out of a total of fourteen expense items
analyzed by Mr. Goble only one (property taxes) has a net lag that exceeds the
net lag for the non-cash items. This means that the non-cash items contribute
more on a dollar-for-dollar basis to the Company's cash working capital need
than do cash items, an illogical result.

Q. WHAT IS MR. GOBLE'S REASONING FOR INCLUDING NON-CASH ITEMS IN THE LEAD/LAG STUDY?

A. Mr. Goble contends that because non-cash expense items are part of the
Company's total revenue requirement these expenses must be included in the
lead/lag study that relates to total revenue requirements.

⁵ This exhibit is based on data taken from Mr. Goble's Attachment GLG-LL-3.

1	Q.	DO YOU ACCEPT THIS ARGUMENT?
2	A.	No. Even though Mr. Goble's first task is to calculate the net lag for ENGI's
3		total revenue requirement, each and every component of the revenue
4		requirement does not have to be analyzed. Only those that have an actual
5		impact on the need for cash working capital should be examined.
6		
7	Q.	YOU NOTED THAT MR. GOBLE ASSIGNED A ZERO LEAD TO EACH
8		NON-CASH ITEM. HAS HE BEEN CONSISTENT IN THIS REGARD?
9	A.	Not completely. While he has consistently assigned a zero lead to depreciation
10		expense, he has assigned uncollectible accounts expense a non-zero lead in
11		testimony filed in other jurisdictions. For example, in a 2008 case before the
12		North Carolina Utilities Commission involving Piedmont Natural Gas
13		Company, Mr. Goble filed a lead/lag study that included uncollectible accounts
14		expense with a lead of 163.44 days.
15		
16	Q.	ARE YOU RECOMMENDING A CHANGE TO THE EXPENSE LEAD
17		CALCULATION?
18	A.	Yes, I am recommending the complete removal of depreciation expense and
19		uncollectible accounts expense. Exhibit GRM-3 shows that these changes alone
20		would result in an average expense lead of 36.30 days, which is 2.48 days
21		longer than the lead calculated by Mr. Goble.

1	Q.	DO YOU ALSO HAVE A CONCERN WITH THE TREATMENT OF NET
2		INCOME IN THE LEAD/LAG STUDY?
3	A.	Yes. Mr. Goble claims that because net income is a below-the-line item the
4		Company should not have to use these funds as working capital without
5		compensation. To avoid uncompensated use of the funds, Mr. Goble proposes
6		to set the lead at zero days.
7		
8	Q.	DO YOU AGREE WITH THIS TREATMENT?
9	A.	No. By using a zero lead, Mr. Goble effectively assumed that stockholders
10		receive the benefit of any net income on a daily basis. That is, the Company
11		would receive no cash flow benefit from net income generated. This
12		assumption is false as the following explanation makes clear. Stockholders
13		receive the benefit of net income in two ways: through regular dividend
14		payments and through capital appreciation upon the sale of their stock.
15		Assuming dividends are paid at the end of each fiscal quarter, an approximate
16		45-day lead would be appropriate for dividends. In addition, since no cash
17		disbursements are associated with retained earnings, this component of net
18		income should be removed from the lead/lag study completely, just like non-
19		cash items.
20		
21	Q.	IS THERE AN ALTERNATIVE APPROACH TO HANDLING NET

INCOME?

1	Q.	DO YOU ALSO HAVE A CONCERN WITH THE TREATMENT OF NET
2		INCOME IN THE LEAD/LAG STUDY?
3	A.	Yes. Mr. Goble claims that because net income is a below-the-line item the
4		Company should not have to use these funds as working capital without
5		compensation. To avoid uncompensated use of the funds, Mr. Goble proposes
6		to set the lead at zero days.
7		
8	Q.	DO YOU AGREE WITH THIS TREATMENT?
9	A.	No. By using a zero lead, Mr. Goble effectively assumed that stockholders
0		receive the benefit of any net income on a daily basis. That is, the Company
11		would receive no cash flow benefit from net income generated. This
12		assumption is false as the following explanation makes clear. Stockholders
13		receive the benefit of net income in two ways: through regular dividend
14		payments and through capital appreciation upon the sale of their stock.
15		Assuming dividends are paid at the end of each fiscal quarter, an approximate
16		45-day lead would be appropriate for dividends. In addition, since no cash
17		disbursements are associated with retained earnings, this component of net
18		income should be removed from the lead/lag study completely, just like non-
19		cash items.
20		
21	Q.	IS THERE AN ALTERNATIVE APPROACH TO HANDLING NET
22		INCOME?

1	A.	Yes, the approach is to remove net income completely from the lead lag study.
2		The support for this approach is that it is irrational to assign a zero lead to a
3		below-the-line item while retaining the full dollar value of that item in the
4		lead/lag study. It seems more appropriate to remove below-the-line item
5		completely.
6		
7	Q.	IS THERE INDEPENDENT SUPPORT FOR THIS TREATMENT?
8	A.	Yes, it is consistent with the FERC's treatment of net income in lead/lag studies.
9		See Florida Gas Transmission Company (Opinion No. 611, 47 FPC 341, 356
10		(1972), reh. denied, Opinion No. 611-A, 49 FPC 261 (1972)) and Louisiana
11		Power & Light Co. (Opinion No. 110, 14 FERC at 61,122).
12		
13	Q.	TURNING NOW TO INTEREST ON SHORT-TERM DEBT, MR. GOBLE
14		ARGUES THAT THE ASSIGNMENT OF A ZERO LEAD TO THIS
15		EXPENSE IS APPROPRIATE BECAUSE "THE INTEREST CONTINUES
16		TO ACCRUE UNTIL IT IS PAID." DO YOU AGREE?
17	A.	No. The fact that interest continues to accrue on short-term debt until it is paid
18		simply means that the average lead is equal to the time difference between the
19		payment date and the mid-point of the service period. According to the
20		Company, the prior month's interest expense on short-term debt is paid on the
21		last day of the current month, a lead of approximately 45 days. ⁶
22		

⁶ See "Notes" in ENGI response to Staff 3-4 attached to this testimony as Exhibit GRM-4.

1	Q.	ARE YOU RECOMMENDING ADDITIONAL CHANGES TO THE
2		EXPENSE LEAD CALCULATION?
3	A.	Yes. In addition to eliminating non-cash items, I recommend that net income be
4		removed and the lead for short-term debt interest expense be set at 45 days
5		rather than zero days. With these changes, the average lead increases to 37.42
6		days or 3.60 days longer than the lead calculated by the Company. See Exhibit
7		GRM-5.
8		
9	2.	Revenue Lag
10	Q.	PLEASE SUMMARIZE MR. GOBLE'S CALCULATION OF THE
11		AVERAGE REVENUE LAG.
12	A.	The revenue lag typically consists of four components:
13 14 15 16 17		A. Service lag;B. Billing lag;C. Collections lag; andD. Payment processing lag (including bank float)
18		Mr. Goble's study includes lags of 15.22 days from gas service to meter reading
19		(i.e., service lag); 1.00 day from meter reading to billing (i.e., billing lag); 34.96
20		days from billing to collection (i.e., collections lag); and zero days from
21		collection to receipt of funds (i.e., payment processing lag). Considered
22		together, these four components total 51.18 days. After adjustment for other
23		revenue items including late payment charges, the average lag fell to 51.12
24		days.
25		

1	Q.	DO YOU HAVE ANY CONCERNS ABOUT THE REVENUE LAG
2		CALCULATION?
3	A.	Yes, I have a concern about how the collections lag was developed.
4		
5	Q.	PLEASE EXPLAIN HOW THE COMPANY CALCULATED THE
6		COLLECTIONS LAG.
7	A.	The collections lag represents the average time in days from the date bills are
8		issued to the date payments are made by customers. As required by the Partial
9		Settlement Agreement in Docket DG 07-050, Mr. Goble used the accounts
10		receivable turnover method to calculate this collections lag.
11		
12	Q.	IS THE EXECUTION OF THAT METHOD CONSISTENT WITH THE
13		PARTIAL SETTLEMENT AGREEMENT?
14	A.	Yes. The Partial Settlement Agreement specifies that the method must be
1 🕶	A.	res. The Fartial Settlement Agreement specifies that the method must be
15		implemented consistent with the direct testimony of George McCluskey dated
16		June 22, 2007, as modified by the joint surrebuttal testimony of Amanda
17		Noonan and George McCluskey dated October 19, 2007. That testimony
18		requires the Company to implement the accounts receivable turnover method
19		using: (i) gas revenues instead of gas costs; (ii) monthly gas revenues instead of
20		rolling twelve month gas revenues; and (iii) accounts receivable balances that
21		are net of net write-offs instead of gross write-offs. My review concludes that
22		Mr. Goble complied with each of these requirements.

A.

2	Q.	NONETHELESS, DO YOU HAVE A CONCERN WITH THE 34.96 DAY
3		COLLECTIONS LAG DERIVED BY MR. GOBLE?

Yes, 34.96 days is significantly higher than the 26.88 days calculated in ENGI's
last base rate case. A large part of this 8.08 day difference is explained, I
believe, by the decline in revenue collections performance during the period
ENGI was owned by KeySpan. A decline in collections performance will
generally increase the average number of days accounts are outstanding, which
in turn increases the accounts receivable balances resulting in longer revenue
lags and more write-offs. The decline in collections performance is clearly
reflected in the substantial increase in the percentage of billings written off by
ENGI over the seven year period ending 2007. As can be seen in Table 1, net
write-offs as a percentage of revenues increased from 1.3% in 2001 (the year
KeySpan acquired ENGI) to 2.47% in 2007. The percentage of billings written
off is a reliable measure of collections performance.

Table 1

ENGI

Write-Offs as Percent of Revenue

э
-
, n

12

1

- 3 Q. PLEASE EXPLAIN WHY YOU BELIEVE THE PERCENTAGE OF
- 4 BILLINGS WRITTEN OFF IS A RELIABLE MEASURE OF COLLECTION
- 5 PERFORMANCE.
- A. Accounts are written-off only after all pre-write-off collection actions have been taken and delinquent customers still fail to make payment on the balances owed.

 Thus, one of the factors contributing to the change in total billings written-off is collections performance. Other factors include sales growth and increasing gas prices. By expressing billings written off as a percentage of revenues, however, the effects of temporal changes in sales growth and gas prices can be

eliminated, thus creating a reliable measure of collections performance.

HOW DOES ENGI COMPARE TO OTHER NEW HAMPSHIRE UTILITIES 1 Q. 2 IN THIS REGARD? ENGI has a higher percentage of write-offs to revenues than any other New 3 A. 4 Hampshire electric or natural gas utility. Table 2 shows that ENGI wrote-off 5 about 2.44% of total revenue over the three year period ending 2007. Over the 6 same period Northern wrote-off only 0.92% of total revenue. UES, National 7 Grid and PSNH performed even better, writing off only 0.26%, 0.52% and 8 0.32% respectively in those years. These data indicate that while revenue 9 collection tends to be a far greater problem for gas companies than electric 10 companies, the magnitude of the problem for ENGI is far greater than for 11 Northern.

TABLE 2

New Hampshire Utilities

Write-Offs as Percent of Revenue

	Net	Net	Net	
	Write-Off	Write-Off	Write-Off	
	2005	2006	2007	Average
ENGI	2.37%	2.47%	2.47%	2.44%
Northern	0.77%	1.05%	0.95%	0.92%
Unitil	0.19%	0.18%	0.40%	0.26%
National Grid	0.46%	0.34%	0.76%	0.52%
PSNH	0.30%	0.34%	0.32%	0.32%

14 15

13

12

Q. ARE THERE OTHER INDICATORS OF POOR COLLECTIONS

16 PERFORMANCE?

17 A. Yes. An aging analysis of ENGI's monthly accounts receivables shows that

18 17.57% of the average accounts receivable balance for 2006 relates to accounts

that were outstanding for more than 120 days. See Exhibit GRM-6, page 1. This is far in excess of the corresponding percentages for Northern (2.6%), PSNH (2.5%), National Grid (2.0%) and UES (1.7%). See Exhibit GRM-6. pages 2-5. Although these data indicate that ENGI's 2006 collections policies/processes were less effective than those of other utilities in improving cash flow, thereby increasing its working capital requirements, additional data are needed to determine whether this sub-standard collections performance is due to ENGI's collections processes or to factors that distinguish ENGI's service area from others, such as unemployment or income levels, urban population concentration, and meter accessibility issues. Service area differences would tend to suggest that the problem is long standing and not related to KeySpan's acquisition of ENGI. In order to answer this question, I requested historical accounts receivable aging information covering the period 2001 through 2006. Unfortunately, ENGI was unable to provide the requested data, claiming that such historical information was discarded because of data storage limitations related to its customer information system. HAS ENGI'S COLLECTIONS PERFORMANCE IMPROVED SINCE 2006? No. While the percentage of write-offs in 2007 remained at the 2006 level, the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Q.

A.

figure in 2006.

percentage of total receivables that were outstanding for more than 120 days in

2007 was 18.2%. See Exhibit GRM-7. This is an increase over the 17.57%

⁷ Note that the PSNH percentage relates to accounts outstanding for more than 90 days instead of 120 days. This suggests that the percentage for accounts outstanding more than 120 days is less than 2.5%.

1		
2	Q.	PLEASE SUMMARIZE YOUR POSITION ON THE COLLECTIONS LAG.
3	A.	I believe that the increase in collections lag from 26.88 days to 34.96 days is
4		largely explained by a decline in ENGI's collections performance. Further, if
5		ENGI is allowed to base its cash working capital requirement on a collections
6		lag of 34.96 days, it would send the message that it is acceptable to have
7		ineffective collections processes and that improvement in this area is
8		unnecessary. For this reason, I recommend that the collections lag be reduced
9		to 32.96 days and the corresponding revenue lag to 49.18 days.
10		
11	Q.	WHAT IS THE BASIS OF YOUR RECOMMENDED COLLECTIONS LAG?
12	A.	In order to reflect in the collections lag the expected improvement in collections
13		performance over the next several years, I derived the 32.96 days by subtracting
14		2 days from the 34.96 days calculated by the Company. Adding to this collections
15		lag a 15.22 days service lag and a 1.0 days billing lag results in a recommended
16		sales revenue lag of 49.18 days. After taking into account other revenues, the
17		final revenue lag is 49.13 days. See Exhibit GRM-8. This revenue lag together
18		with the expense lead calculated above results in a net lag for total revenue
19		requirements of 11.7 days.
20		
21	Q.	HAVE YOU CALCULATED THE DELIVERY-RELATED CASH
22		WORKING CAPITAL THAT RESULTS FROM YOUR NET LAG
23		ESTIMATE?

1	A.	Yes. I calculated the delivery-related cash working capital requirement to be
2		\$1,547,211, reflecting a net lag of 18.24 days. See Exhibit GRM-9. This is
3		approximately \$2.5 million less than the \$4,127,997 calculated by Mr. Goble.
4		
5	Q.	HAVE YOU REVIEWED MR. GOBLE'S SUPPLY-RELATED CASH
6		WORKING CAPITAL CALCULATION?
7	A.	Yes. I have concluded that the supply-related cash working capital should be
8		\$3,713,586 based on a net lag of 10.18 days. See Exhibit GRM-9. The 10.18
9		days is derived using a revenue lag of 49.13 days and Mr. Goble's expense lead
10		of 38.94 days. I have not, however, reviewed in any detail Mr. Goble's
11		expense lead calculation. Accordingly, I recommend that the Company update
12		its supply-related lead/lag study every three years and reflect the results in its
13		cost of gas filings.
14		
15	Q.	DOES THAT COMPLETE THE CASH WORKING CAPITAL PORTION OF
16		YOUR TESTIMONY?
17	A.	Yes.
18		
19	III.	MARGINAL COST OF SERVICE STUDY
20	Q.	PLEASE PROVIDE A BRIEF OVERVIEW OF MR. GOBLE'S MARGINAL
21		COST STUDY.
22	A.	Instead of assigning the Company's proposed total revenue requirement to
23		customer classes based on an accounting cost of service study, Mr. Goble chose

to use a marginal cost study for that purpose. A marginal cost study seeks to estimate the costs of providing one more or one less unit of service, which in the case of delivery service comprise capacity-related and customer-related costs. Once estimated, these unit costs are multiplied by the corresponding billing determinants for each customer class to arrive at the marginal cost-based class revenue requirements. To the extent the sum of these marginal cost-based class revenue requirements differs from the total revenue requirement, the marginal cost-based class revenue requirements are adjusted to provide the utility an opportunity to recover its total revenue requirement.

Mr. Goble's marginal cost study provides marginal capacity cost estimates for each component of ENGI's distribution system including the marginal cost of operations and maintenance. He also provides an estimate of the marginal cost of adding to the system a single customer in each customer class. Based on these cost estimates and the corresponding class billing determinants, Mr. Goble estimates that marginal-cost based charges would produce 25.23% more revenue than the Company's total revenue requirement. In order to limit revenue recovery to the Company's revenue requirement, Mr. Goble decreased the marginal class revenues uniformly by 25.23%, subject to the constraint that no rate class receive a rate increase greater than 125% of the average requested increase. The 125% factor is designated as the revenue cap.

Q. WHAT DOES THE MARGINAL COST STUDY SHOW?

1 A. The principal conclusion of Mr. Goble's marginal cost study is that the
2 commercial and industrial rate class with load factors greater than 110% and all
3 residential rate classes are paying substantially less than marginal cost. In
4 contrast, most other rate classes are paying more than marginal cost.

5

- Q. WHAT IS YOUR OPINION OF THE METHODOLOGY EMPLOYED TO
 ESTIMATE THE COST OF PROVIDING ONE MORE OR ONE LESS UNIT
 OF DISTRIBUTION SERVICE?
- The methodology employed by Mr. Goble for estimating the marginal cost of 9 A. the distribution is not completely based on forward looking projections of load 10 11 growth and delivery-related investments. Rather, the marginal cost estimates for mains extensions were developed using historical data. Specifically, 12 13 growth-related capital investments over a nineteen year historical period were 14 identified and regressed against growth in design day demand over the same 15 time period. While it is common to use methods that employ historical data as 16 proxies for the more complex forward looking marginal cost estimates, the reasonableness of the results depends critically on the quality of the available 17 18 cost and load data and how that data is used.

19

21

20 Q. DO YOU HAVE ANY CONCERNS WITH THE QUALITY OF THE

AVAILABLE DATA OR HOW IT WAS USED?

22 A. Yes. Attachment GLG-RD-3, page 4 to Mr. Goble's testimony summarizes his 23 estimate of the marginal cost of distribution investment. As the attachment 24 shows, the cost comprises two components: (i) the relatively small marginal

cost to reinforce the existing distribution system; and (ii) the much more
significant marginal cost to extend distribution mains into areas not previously
served. The marginal cost of new mains extensions was calculated by
regressing cumulative investment in extending distribution mains against design
day demand. See Attachment GLG-RD-3, page 7. The Company, however,
indicates in response to discovery that the historical series of investments used
in that regression calculation are net of customer contributions in aid of
construction.8 Because the Company failed to use the total cost of mains
extension in its regression calculation, the marginal cost is understated.

Q. WHAT IS THE EFFECT OF THIS UNDERSTATEMENT ON CLASS

12 REVENUE REQUIREMENTS?

A. I was unable to calculate the impact on marginal cost and, hence, class revenue requirements because the Company failed to maintain its records in a way that allows the annual contributions to be discerned for some years of the historical series. However, in those years that data are available, the magnitude of the contributions is such that the impacts are unlikely to be significant.

19 Q. ARE THERE OTHER EXAMPLES OF THE USE OF QUESTIONABLE

20 DATA OR INAPPROPRIATE CALCULATIONS?

21 A. Yes. As noted above, the marginal cost of distribution comprises two
22 components: the marginal cost of reinforcement and the marginal cost of mains
23 extension. ENGI calculated the former by regressing cumulative investment in

⁸ See ENGI Response to Staff 4-1 attached to this testimony as Exhibit GRM-10.

reinforcement against design day demand over the ten year period 2008 through 2017. See Attachment GLG-RD-3, Page 6 to Mr. Goble's rate design testimony. ENGI's regression analysis, however, includes only seven data pairs (i.e., reinforcement cost and design day demand). During the first six years of the ten year period, the annual reinforcement cost is paired with the corresponding design day demand. This accounts for six of the seven data pairs. ENGI's seventh data pair comprises the cumulative reinforcement cost for the remaining four years and the design day demand for Year 10.9 Combining annual and multi-year data in this way is inappropriate because it results in a different regression coefficient and, hence, a different marginal reinforcement cost.

- Q. WHAT EFFECT DOES THE COMPANY'S METHOD HAVE ON THE
- 14 MARGINAL REINFORCEMENT COST?
- 15 A. Because the Company was unable to provide the individual design day demands
 16 and associated reinforcement costs for the years 2014 through 2017, 10 I was not
 17 able to calculate the true marginal reinforcement cost.

- 19 Q. ARE THERE EXAMPLES OF QUESTIONABLE DATA OR
- 20 INAPPROPRIATE CALCULATIONS IN RELATION TO MARGINAL
- 21 CUSTOMER COSTS?

⁹ See ENGI Response to Staff 4-9 attached to this testimony as Exhibit GRM-11.

¹⁰ See ENGI Response to Staff 4-10 attached to this testimony as Exhibit GRM-12.

A. Yes, Attachment GLG-RD-3, page 8 of 37 provides the average service cost and average meter cost used to calculate marginal customer cost for each rate class. The average meter cost, however, is not equivalent to the marginal meter cost because it includes an allowance for the cost of carrying spare meters, estimated to be 10% of the unit cost of a meter. Since each customer requires only a single meter to receive electric service, the cost of carrying a spare meter is not a marginal cost. This means that the Company has overstated the marginal customer cost. 11

A.

Q. DO YOU HAVE OTHER CONCERNS?

NON-PAYMENT OF BILLS?

Yes, Attachment GLG-RD-3, page 35 of 37 provides a summary of the marginal cost by cost component (i.e., customer- and demand-related costs) and by rate class. The attachment shows that each cost component for each rate class has been adjusted upwards by a factor that represents the class uncollectible percentage. Such adjustments, however, are inappropriate because the cost of customer non-payment is not a marginal cost. That is, the cost to meet the demand of a new customer is independent of whether that customer pays his or her bill on time or at all. Indeed, customer non-payment is a revenue collection issue and not a marginal cost issue.

Q. IS THERE INDEPENDENT SUPPORT FOR YOUR POSITION ON THE

¹¹Since it is appropriate for the Company itself to carry spare meters, the associated cost is appropriately included in the total revenue requirement.

A. Yes. Mr. Goble has stated that his marginal cost study is based on the model
developed by his MAC colleague James Harrison, who has considerably more
experience in the area of marginal cost pricing. In this regard, it is worth noting
that the marginal cost study sponsored by Mr. Harrison in Unitil Energy
System's recent base rate proceeding (Docket DE 05-178) does not adjust the
marginal cost estimate for the cost of non-payment.¹²

7

- 8 Q. PLEASE SUMMARIZE YOUR CONCLUSIONS REGARDING MR.
- 9 GOBLE'S MARGINAL COST STUDY?
- 10 A. Despite several errors in the calculation of marginal capacity and customer
 11 costs, I believe the results of Mr. Goble's marginal cost study provide sufficient
 12 support for changing rate class revenue requirements and re-designing rates.

13

17

18

19

20

21

22

- 14 Q. MR. GOBLE HAS PROPOSED TO CAP THE RATE INCREASE TO ANY
 15 CLASS AT 125% OF THE REQUESTED 17.2% OVERALL INCREASE. IS
 16 THAT PROPOSAL REASONABLE?
 - A. While a less restrictive revenue cap would provide the Company an opportunity to accelerate the elimination of the inter-class subsidies shown in the marginal cost study, that goal must be balanced with the bill impacts of a less restrictive cap. The significance of this point can be understood by noting that a less restrictive cap could result in a rate increase for residential heat customers (ENGI's largest customer group) that substantially exceeds the proposed 21.5% increase. While the Company might argue that the 21.5% increase applies only

¹² Compare Mr. Goble's Table 12 with Mr. Harrison's Table 12, provided here as Exhibit GRM-13.

1		to the distribution portion of residential heat customer bills, the fact remains that
2		the commodity portion of those bills has experienced significant volatility since
3		the beginning of the year. Therefore, based on the assumption that the
4		Company's overall rate increase request is determined to be reasonable, I
5		recommend that the 125% revenue cap be adopted.
6 7	Q.	PLEASE EXPLAIN HOW MR. GOBLE'S PROPOSED CLASS REVENUE
8		REQUIREMENTS WERE DEVELOPED.
9	A.	The method used to arrive at the proposed class revenue requirements is shown
10		on Attachment GLG-RD-4-2, page 2. As noted above, bill impact
11		considerations limited the maximum increase for any rate class to 21.5%. The
12		differences between the adjusted marginal cost based revenue requirements and
13		the maximum level of revenues allowed under the revenue cap were summed
14		and then allocated on a pro-rata revenue basis to the rate classes whose rate
15		increases were not affected by the revenue cap. If that process resulted in any
16		rate class exceeding its maximum allowed increase, the unrecovered revenue
17		requirements for such classes were allocated to the rate classes unaffected by
18		the revenue cap. This process was repeated until the revenue requirement
19		increase for each rate class did not exceed the maximum level.
20		
21	Q.	WHAT ARE THE PERCENTAGE INCREASES THAT RESULTED FROM
22		THIS PROCESS?
23	A.	Mr. Goble has proposed to increase the rates to the three residential rate classes
24		by the maximum extent possible; namely, 21.5%. In addition, large commercial

and industrial customers with load factors greater than 90% will effectively see 1 the maximum increase, as will the G-43 rate class. The remaining classes will 2 3 see increases ranging from 0% to 14%. 4 5 DO YOU SUPPORT THE PROPOSED CLASS RATE INCREASES? Q. 6 A. As a consequence of limiting the maximum rate increase to 125% of the 7 requested overall increase, the above described process means that none of the 8 rate classes that are currently paying more than marginal cost will receive any 9 rate relief. This includes customers served under the G-51 and G-52 rate 10 schedules who are currently paying 17% and 11% more, respectively, than 11 marginal cost. To obtain a different result would require a less restrictive 12 revenue cap, which, as noted above, would likely mean that residential 13 customers would have to endure even higher rates. For this reason, I support 14 the proposed rate class increases. That said, I recommend that the issue of rate 15 relief to G-51 and G-52 customers be re-visited if the increase authorized by the 16 Commission turns out to be substantially smaller than the requested increase. 17 DOES THAT COMPLETE THE MARGINAL COST PORTION OF YOUR 18 Q. 19 **TESTIMONY?** 20 A. Yes. 21 22 IV. RATE DESIGN

PLEASE DESCRIBE THE COMPANY'S EXISTING RATE STRUCTURES.

23

Q.

Most residential customers receive distribution service under Rate R-3 which is composed of a monthly customer charge and a declining block energy rate structure. That is, an initial block of therms each month is provided at a rate that is higher than the rate applied to all therms consumed in excess of that amount (i.e., the "tail block" amount). The same rate structure is used to provide service to most commercial and industrial customers, with the remainder billed under a flat rate structure.

A.

A.

Q. HOW HAS MR. GOBLE PROPOSED TO RE-DESIGN THE COMPANY'S RATES?

Because marginal customer costs were found to be substantially higher than existing customer charges, Mr. Goble has proposed to raise customer charges significantly. To ensure the target revenue requirement for each rate class is not over collected, he has also proposed a pro-rata reduction to existing volumetric therm charges. In terms of percentages, these rate design proposals mean customer charges will account for almost 52% of the proposed distribution revenue requirement, up from about 30% currently. In contrast, the percentage of distribution revenues accounted for by the initial and tail block rates will fall from the current 39% and 30%, respectively, to 27% and 21%. Therefore, the net effect of Mr. Goble's rate re-design is to recover a greater portion of the total revenue requirement through customer charges and less through volumetric therm rates.

1	Q.	WHAT EFFECT WILL MR. GOBLE'S PROPOSAL HAVE ON THE
2		COMPANY?
3	A.	Monthly customer charges represent assured or almost assured revenue. This
4		obviously reduces the economic risks of the Company's operations and provides
5		more assurances of net income available to shareholders. The risks in question
6		include weather variability; declining use per customer; and volatility in
7		customer bills.
8		
9	Q.	MR. GOBLE CONTENDS THAT THE PROPOSED RATE RE-DESIGN IS
10		JUSTIFIED BECAUSE MARGINAL DISTRIBUTION-RELATED
11		INVESTMENT COSTS ARE FIXED AND HENCE MORE
12		APPROPRIATELY COLLECTED THROUGH FIXED CUSTOMER
13		CHARGES AS OPPOSED TO VOLUMETRIC CHARGES. BEFORE YOU
14		COMMENT ON THAT ARGUMENT, PLEASE EXPLAIN WHAT IS
15		MEANT BY THE STATEMENT INVESTMENT COSTS ARE FIXED.
16	A.	While Mr. Goble recognizes that investment in distribution-related facilities is
17		driven in large part by changes in the design day demands of customers, he
18		contends that once those facilities are built the costs are unaffected by the
19		amount of gas actually transported by them. From this he concludes that it is
20		more appropriate to collect distribution-related investment costs through fixed
21		charges, rather than volumetric charges.

I	Q.	WITH THAT CLARIFICATION, WHAT DO YOU THINK OF MR.
2		GOBLE'S ARGUMENT THAT MARGINAL DISTRIBUTION SYSTEM
3		COSTS ARE FIXED?
4	A.	Distribution-related investments made to meet load growth are a function of
5		growth in design day demand, which in turn is a function of the number of
6		customers served and their individual loads. More specifically, the costs to
7		reinforce and expand a utility's distribution system to maintain system
8		reliability will increase, in the long run, as the number of customers served
9		increases and the individual peak period demands of new and existing
10		customers increase. Therefore, the claim that marginal distribution system costs
11		are fixed is not consistent with reality or gas utility planning practice.
12 13	Q.	WHAT DOES THIS MEAN FOR COST COLLECTION?
14	A.	The fact that the costs to expand the distribution system are a function of growth
15		in design day demands does not mean that test year volumetric demands cannot
16		be used to design rates. As long as a customer's relative contribution to the
17		design day demand does not change significantly as weather conditions change,
18		it would be reasonable to collect the approved revenue requirement through
19		rates based on test year volumetric demands. Admittedly, it would be more
20		accurate to bill customers based on their test year design day demands. This,
21		however, assumes the availability of cost-effective metering equipment to
22		measure customer demands during peak periods.
23		If cost-effective demand meters are not available, then a second best solution is
24		to collect the utility's distribution revenue requirement through volumetric

1		charges. There is simply no valid argument for collecting 100% of these costs
2		through fixed customer charges. As the above indicates, marginal distribution
3		costs are not fixed.
4 5	Q.	THE COMPANY ALSO ARGUES THAT ITS PROPOSED RATE RE-
6		DESIGN IS MORE ECONOMICALLY EFFICIENT BECAUSE IT BETTER
7		RELECTS MARGINAL COSTS. DO YOU AGREE WITH THIS
8		ARGUMENT?
9	A.	Partially. Despite my concerns about some of his cost calculations, I believe
10		Mr. Goble's chief conclusion that customer charges should increase is supported
11		by the marginal cost study. However, given that distribution-related investment
12		costs are not fixed in the long run, plus the need for stability in customer bills,
13		an alternative to collecting all of the distribution revenue requirement through
14		customers charges is to: (i) collect through customer charges a larger portion of
15		the revenue requirement than currently collected through that rate component;
16		and (ii) adjust the initial and tail block rates on a pro-rata basis consistent with
17		the rate class target revenues. This is the approach used by Mr. Goble.
18		
19	Q.	ARE THE PROPOSED CUSTOMER CHARGES REASONABLE IN YOUR
20		OPINION?
21	A.	There are two issues here. The first is that a comparison of the monthly
22		marginal customer costs with the proposed monthly customer charges shows
23		that the charges are substantially below cost for all but two rate classes, G-41
24		and G-51. This anomaly can be corrected by lowering the customer charges for

1		the G-41 and G-51 rate classes and collecting the resulting revenue shortfall
2		through higher volumetric rates.
3		The second issue relates to low use customers. Because each rate class will face
4		an increase in the customer charge of at least 100% and reductions in volumetric
5		rates, low use customers will suffer significant bill increases whereas high use
6		customers will in some cases enjoy bill reductions. For example, this is
7		apparent from Mr. Goble's typical bill analysis for residential heat customers,
8		which shows the change in winter bills ¹³ ranging from 100% at one end of the
9		usage spectrum to -15% at the other end. 14 These bill impacts are clearly
10		inequitable when compared to the proposed overall increase for the same class
11		of 21.5%.
12		For rate classes with declining block rate structures, the variation in intra-class
13		bill impacts could be reduced by utilizing a flat rate structure. The reduction,
14		however, is unlikely to be large as long as the rate re-design involves a
15		significant increase in the customer charge and a decrease in the average
16		volumetric rate. Therefore, to significantly reduce variation in intra-class bill
17		impacts, customer charges need to be lower than proposed.
18		
19	Q.	HOW MUCH LOWER?
20	A.	To make this determination, I believe a rule should be established that places a
21		limit on the maximum bill increase that a single customer should face. In this

regard, I recommend that no customer be required to shoulder an increase in the

Excluding commodity costs.
 See Attachment GLG-RD-4-5, page 3.

1		delivery portion of his/her bill that exceeds twice the increase proposed for that
2		rate class.
3		
4	Q.	WOULD A FLAT RATE STRUCTURE DISCOURAGE GREATER GAS
5		CONSUMPTION?
6	A.	Yes. Declining block rate structures tend to promote greater usage, which, in
7		turn, requires more investment in infrastructure to meet the resulting load
8		growth. However, if the tail block rate is at or above marginal cost, setting the
9		flat rate above this level simply to promote energy conservation will encourage
10		customers to make economically inefficient decisions which in the long run will
11		lead to an increase in system costs.
12		
13	Q.	MR. GOBLE HAS ALSO PROPOSED TO ELIMINATE THE G-54 RATE
14		AND MODIFY THE G-63 RATE SUCH THAT THE LONE REMAINING G-
15		54 CUSTOMER IS COVERED. WHAT IS THE BACKGROUND TO THIS
16		PROPOSAL?
17	A	. The G-54 rate is for large customers with load factors between 90% and 110%
18		whereas the G-63 rate is for large customers with load factors greater than
19		110%. The proposal is to modify the G-63 availability clause to read "load
20		factor greater than 90%." Mr. Goble states that the change is needed to address
21		the substantial decline in the number of customers served under the rate,
22		apparently due to G-54 customers being reclassified to G-63 status.
23		

- 1 Q. WHAT IS YOUR RECOMMENDATION?
- 2 A. Staff recommends that the Commission approve the change based on the fact
- 3 that existing G-63 customers would be impacted minimally and that the lone G-
- 4 54 customer would receive a 3% savings.

5

- 6 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
- 7 A. Yes.

GEORGE R. McCLUSKEY

NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION Analyst

George McCluskey is a ratemaking specialist with over 20 years experience in utility economics. Since rejoining the New Hampshire Public Utilities Commission ("NHPUC") in 2005, he has worked on default service and standby rate issues in the electric sector and cost allocation issues in the gas sector. While at La Capra Associates, a Boston-based consulting firm specializing in electric industry restructuring, wholesale and retail power procurement, market price and risk analysis, and power systems models and planning methods, he provided strategic advice to numerous clients on a variety of issues. Prior to joining La Capra Associates, Mr. McCluskey directed the electric utility restructuring division of the NHPUC and before that was manager of least cost planning in the economics division, directing and supervising the review and implementation of electric and gas utility least cost plans and demand-side management programs. He has testified as an expert witness in numerous electric and gas cases before state and federal regulatory agencies.

ACCOMPLISHMENTS

Recent project experience includes:

- Staff of the New Hampshire Public Utilities Commission Expert testimony before NHPUC regarding default service design and pricing issues in cases involving Unitil Energy Systems.
- Staff of the New Hampshire Public Utilities Commission Expert testimony before Maine Public Utilities Commission regarding interstate allocation of natural gas capacity costs in case involving Northern Utilities.
- **Staff of the Arkansas Public Service Commission** Analysis and case support regarding Entergy Arkansas Inc.'s application to transfer ownership and control of its transmission assets to a Transco. Also analyzed Entergy Arkansas Inc.'s stranded generation cost claims.

Massachusetts Technology Collaborative - Evaluated proposals by renewable

resource developers to sell Renewable Energy Credits to MTC in reponse to 2003 RFP.

- Pennsylvania Office of the Consumer Advocate Analysis and case support regarding horizontal and vertical market power related issues in the PECO/Unicom merger proceeding. Also advised on cost-of-service, cost allocation and rate design issues in FERC base rate case for interstate natural gas pipeline company.
- Staff of the New Hampshire Public Utilities Commission Expert testimony before the NHPUC regarding stranded cost issues in Restructuring Settlement Agreement submitted by Public Service Company of New Hampshire and various settling parties. Testimony presented an analysis of PSNH's stranded costs and made recommendations regarding the recoverability of such costs.
- **Town of Waterford, CT** Advisory and expert witness services in litigation to determine property tax assessment for nuclear power plant.
- **Washington Electric Cooperative, VT** Prepared report on external obsolescence in rural distribution systems in property tax case.
- New Hampshire Public Utilities Commission Expert testimony on behalf of the NHPUC before the Federal Energy Regulatory Commission regarding the Order 888 calculation of wholesale stranded costs for utilities receiving partial requirements power supply service.
- **Ohio Consumer Council** Expert testimony regarding the transition cost recovery requests submitted by the American Electric Power Co., including a critique of the discounted cash flow and revenues lost approaches to generation asset valuation.

EXPERIENCE

New Hampshire Public Utilities Commission (2005 to Present)

Analyst, Electric Division

La Capra Associates (1999 to 2005)

Senior Consultant

New Hampshire Public Utilities Commission (1987 – 1999)

Director, Electric Utilities Restructuring Division Manager, Lease Cost Planning Utility Analyst, Economics Department

Electricity Council, London, England (1977-1984)

Pricing Specialist, Commercial Department

Information Officer, Secretary's Office

EDUCATION:

Ph.D. candidate in Theoretical Plasma Physics, University of Sussex Space Physics Laboratory.

Withdrew in 1977 to accept position with the Electricity Council.

B.S., University of Sussex, England, 1975.

Theoretical Physics

Cash Working Capital Requirements Lead/Lag Study Expense Net Lag Calculation

	Lead	Net
	Days	Lag Days
Operation & Maintenance Expense Purchased Gas	38.94	10.18
Labor	35.35	13.77
Employee Pensions & Benefits	21.24	27.88
Uncollectible Accounts	0.00	49.12
Other O&M Expenses	34.50	14.62
Depreciation & Amortization Expense	0.00	49.12
Other Taxes Other Taxes Excluding Property Taxes	18.85	30.27
Property Taxes	(28.87)	77.99
Income Taxes	3.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	12.62
State Income Taxes	36.50	12.62
Deferred Income Taxes	0.00	49.12
Return		
Interest on long-Term Debt	91.25	(42.13)
Interest on Short-Term Debt	00:00	49.12
Income for Return	0.00	49.12

Cash Working Capital Requirements Staff Lead/Lag Study Expense Lead Calculation-Elimination of Non-Cash Items

	Expense Amount	Lead <u>Days</u>	Weighted Amount
Operation & Maintenance Expense	Amount	<u>Days</u>	Amount
Purchased Gas	\$133,114,231	38.94	\$5,183,468,155
Labor	\$8,458,605	35.35	\$299,011,687
Employee Pensions & Benefits	\$4,705,624	21.24	\$99,947,454
Uncollectible Accounts	\$ O	0.00	\$0
Other O&M Expenses	<u>\$8,777,500</u>	<u>34.50</u>	<u>\$302,823,750</u>
Total O&M Expenses	\$155,055,960	37.96	\$5,885,251,046
Depreciation & Amortization Expense	\$0	0.00	\$0
Other Taxes			
Other taxes Excluding Property Taxes	\$235,204	18.85	\$4,433,595
Property Taxes	\$3,577,756	<u>(28.87)</u>	<u>(\$103,289,816)</u>
Total Other Taxes	\$3,812,960	(25.93)	(\$98,856,220)
Income Taxes			
Federal Income Taxes	\$1,425,300	36.50	\$52,023,450
State Income Taxes	<u>\$378,300</u>	<u>36.50</u>	<u>\$13,807,950</u>
Total income Taxes	\$1,803,600	36.50	\$65,831,400
Return			
Interest on long-Term Debt	\$2,900,000	91.25	\$264,625,000
Interest on Short-Term Debt	\$508,859	0.00	\$0
Income for Return	<u>\$4,413,395</u>	<u>0.00</u>	<u>\$0</u>
Total Return	\$7,822,254	33.83	\$264,625,000
Total Expenses	\$168,494,774	36.30	\$6,116,851,225
Difference between Staff and Company		2.48	

National Grid NH's Responses to Staff Set 3

Date Request Received: August 6, 2008

Request No. Staff 3-4

Date of Response: August 25, 2008

Witness: Gary Goble

REQUEST: Please provide by month for the test year the interest paid on short-term

debt. In addition, please provide the start and end dates for each period

and the associated payment date.

RESPONSE: Please see Attachment Staff 3-4.

Energy North DG 08-009 Request No. Staff 3-4

Money Pool Financing 12 Months Ended 6/30/07	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Jan-07	Feb-07	Mar-07
Money Pool Interest Expense: Combined (Fuel & Other) Money Pool Interest Income: Combined (Fuel & Other)	171,999.30	169,328.68 -	122,681.11	135,918.34 -	147,211.51	164,362.27 -	182,033.98 -	163,303.25 -	159,359.13 -
Money Pool Net Interest: Combined (Fuel & Other)	171,999.30	169,328.68	122,681.11	135,918.34	147,211.51	164,362.27	182,033.98	163,303.25	159,359.13
Monthly Interest Rate	5.4242%	5.4132%	5.3902%	5.3792%	5.3770%	5.3231%	5.3508%	5.2711%	5.2589%
Money Pool Interest Expense: Fuel Financing Money Pool Interest Income: Fuel Financing	76,427.77	81,417.80	82,650.63	89,738.62	93,409.76	98,877.86	98,185.83	81,439.80	72,736.64
Money Pool Net Interest: Fuel Financing	76,427.77	81,417.80	82,650.63	89,738.62	93,409.76	98,877.86	98,185.83	81,439.80	72,736.64
Monthly Interest Rate	5.4242%	5.4132%	5.3902%	5.3792%	5.3770%	5.3231%	5.3508%	5.2711%	5.2589%
Money Pool Interest Expense: Other than Fuel Financing Money Pool Interest Income: Other than Fuel Financing	95,571.53	87,910.87	40,030.48	46,179.72	53,801.75	65,484.41	83,848.15	81,863.44	86,622.49
Money Pool Net Interest: Other than Fuel Financing	95,571.53	87,910.87	40,030.48	46,179.72	53,801.75	65,484.41	83,848.15	81,863.44	86,622.49
Monthly Interest Rate	5.4242%	5.4132%	5.3902%	5.3792%	5.3770%	5.3231%	5.3508%	5.2711%	5.2589%

Notes:

The start date for each period is the first of the month and the end date is the last day of the month. The prior month's interest expense is paid on the last day of the current month (a one-month lag)

Attachment Staff 3-4 National Grid NH DG 08-009 Page 2 of 2

Energy North DG 08-009 Request No. Staff 3-4

Money Pool Financing 12 Months Ended 6/30/07	Apr-07	May-07	Jun-07
Money Pool Interest Expense: Combined (Fuel & Other) Money Pool Interest Income: Combined (Fuel & Other)	117,422.00 -	94,541.70	153,754.80 -
Money Pool Net Interest: Combined (Fuel & Other)	117,422.00	94,541.70	153,754.80
Monthly Interest Rate	5.2646%	5.2653%	5.3402%
Money Pool Interest Expense: Fuel Financing Money Pool Interest Income: Fuel Financing Money Pool Net Interest: Fuel Financing	53,165.79	42,299.64	27,972.61 27,972.61
Monthly Interest Rate	5.2646%	5.2653%	5.3402%
Money Pool Interest Expense: Other than Fuel Financing Money Pool Interest Income: Other than Fuel Financing	64,256.20	52,242.07	125,782.18
Money Pool Net Interest: Other than Fuel Financing	64,256.20	52,242.07	125,782.18
Monthly Interest Rate	5.2646%	5.2653%	5.3402%

Notes:

The start date for each period is the first of the month and the end date. The prior month's interest expense is paid on the last day of the current

Cash Working Capital Requirements Staff Lead/Lag Study Expense Lead Calculation-Elimination of Net Income and Change in Short-term Debt

	Expense	Lead	Weighted
	<u>Amount</u>	<u>Days</u>	<u>Amount</u>
Operation & Maintenance Expense			
Purchased Gas	\$133,114,231	38.94	\$5,183,468,155
Labor	\$8,458,605	35.35	\$299,011,687
Employee Pensions & Benefits	\$4,705,624	21.24	\$99,947,454
Uncollectible Accounts	\$0	0.00	\$0
Other O&M Expenses	\$8,777, <u>5</u> 00	<u>34.50</u>	\$302,82 <u>3,750</u>
Total O&M Expenses	\$155,055,960	37.96	\$5,885,251,046
Depreciation & Amortization Expense	\$0	0.00	\$0
Other Taxes			
Other taxes Excluding Property Taxes	\$235,204	18.85	\$4,433,595
Property Taxes	<u>\$3,577,756</u>	<u>(28.87)</u>	<u>(\$103,289,816)</u>
Total Other Taxes	\$3,812,960	(25.93)	(\$98,856,220)
Income Taxes			
Federal Income Taxes	\$1,425,300	36.50	\$52,023,450
State Income Taxes	<u>\$378,300</u>	<u>36.50</u>	\$13,807,950
Total income Taxes	\$1,803,600	36.50	\$65,831,400
Return			
Interest on long-Term Debt	\$2,900,000	91.25	\$264,625,000
Interest on Short-Term Debt	\$508,859	45.00	\$22,898,655
Income for Return	<u>\$0</u>	0.00	<u>\$0</u>
Total Return	\$3,408,859	84.35	\$287,523,655
Total Expenses	\$164,081,379	37.42	\$6,139,749,880
Difference between Staff and Company		3.60	

ENGI Accts Receivable Aging Analysis*

	0-30	121+	Total
2006 January	\$19,651,669	\$2,340,385	\$26,807,074
February	\$16,633,434	\$2,233,373	\$25,906,715
March	\$15,257,005	\$2,134,102	\$24,215,100
April	\$10,587,237	\$2,270,476	\$20,412,025
May	\$6,327,578	\$2,654,610	\$15,928,186
June	\$4,528,805	\$2,918,324	\$12,597,441
July	\$4,336,881	\$3,628,635	\$11,719,621
August	\$3,160,361	\$3,851,316	\$9,415,546
September	\$3,964,404	\$3,484,546	\$9,313,563
October	\$5,172,949	\$3,144,466	\$9,991,969
November	\$7,621,243	\$2,936,010	\$12,383,713
December	\$11,899,337	\$2,851,571	\$17,322,211
Annual Avg	\$9,095,075	\$2,870,651	\$16,334,430
Percent	55.68%	17.57%	

EXHIBIT GRM-6 Page 2 of 5

Northern Accts Receivable Aging Analysis*

	0-30	121+	Total
2006 January	\$6,881,486	\$125,607	\$8,209,083
February	\$6,329,639	\$129,660	\$7,692,755
March	\$6,004,986	\$129,038	\$6,831,054
April	\$5,012,669	\$174,465	\$7,125,328
May	\$2,271,704	\$169,820	\$3,352,743
June	\$1,827,176	\$186,568	\$2,651,527
July	\$1,488,086	\$208,893	\$2,142,786
August	\$1,234,859	\$99,255	\$1,460,123
September	\$1,640,123	\$50,710	\$1,814,876
October	\$1,743,284	\$12,608	\$2,023,232
November	\$3,301,562	\$21,400	\$3,831,801
December	\$5,017,470	\$41,481	\$5,657,902
Annual Avg	\$3,562,754	\$112,459	\$4,399,434
Percent	80.98%	2.56%	

EXHIBIT GRM-6 Page 3 of 5

National Grid Accts Receivable Aging Analysis*

		0-30	121+	Total
2006	January	\$6,266,384	\$133,687	\$7,303,221
	February	\$4,995,691	\$159,065	\$6,301,178
	March	\$5,185,072	\$177,372	\$6,251,580
	April	\$4,371,543	\$116,930	\$5,348,334
	May	\$4,972,026	\$114,413	\$5,836,036
	June	\$6,130,250	\$133,416	\$7,066,222
	July	\$7,946,901	\$155,939	\$9,089,438
	August	\$7,776,519	\$131,730	\$8,035,522
	September	\$6,477,763	\$113,589	\$6,930,926
	October	\$5,532,954	\$113,706	\$6,795,088
	November	\$5,589,154	\$140,890	\$6,795,088
	December	\$6,526,645	\$191,776	\$7,887,083
	Annual Avg	\$5,980,909	\$140,209	\$6,969,97 <u>6</u>
	Percent	85.81%	2.01%	

EXHIBIT GRM-6 Page 4 of 5

UES Accts Receivable Aging Analysis*

		0-30	121+	Total
2006	January	\$8,744,17	3 \$189,686	\$10,375,986
ļ	February	\$7,887,373	3 \$230,630	\$9,707,003
I	March	\$7,818,922	2 \$203,552	\$9,704,952
,	April	\$7,450,239	9 \$180,696	\$9,191,884
I	May	\$7,633,87	5 \$167,485	\$9,440,657
	June	\$8,266,730	0 \$167,655	\$9,553,466
,	July	\$10,759,569	9 \$170,090	\$12,180,485
,	August	\$10,001,982	2 \$163,382	\$12,015,752
;	September	\$8,914,90	8 \$144,002	\$10,723,439
(October	\$8,313,218	8 \$150,170	\$9,845,787
I	November	\$8,928,93	2 \$191,055	\$10,638,203
1	December	\$10,247,91	4 \$223,640	\$12,621,948
,	Annual Avg	<u>\$8,747,320</u>	0 \$181,837	\$10,499,963
1	Percent	83.31%	6 1.73%	

EXHIBIT GRM-6 Page 5 of 5

PSNH Accts Receivable Aging Analysis*

0-30

90+

Total

2006 Annual Avg Percent

\$97,136,153 82.85% \$2,957,000 2.52% \$117,245,006

ENGI Accts Receivable Aging Analysis*

		0-30	121+	Total
2007	January	\$13,871,203	\$2,686,117	\$20,063,633
	February	\$19,594,519	\$2,507,108	\$27,225,493
	March	\$19,256,462	\$2,428,394	\$28,811,463
	April	\$11,433,520	\$2,227,726	\$22,117,596
	May	\$5,753,615	\$2,358,427	\$15,860,877
	June	\$4,749,971	\$3,040,367	\$13,782,287
	July	\$3,708,127	\$3,790,820	\$11,668,228
	August	\$3,325,337	\$4,148,650	\$10,226,249
	September	\$3,595,927	\$3,899,660	\$9,609,295
	October	\$4,046,338	\$3,404,773	\$9,205,902
	November	\$6,903,871	\$3,194,871	\$11,932,466
	December	\$16,834,918	\$3,142,076	\$22,749,944
	Annual Avg	\$9,422,817	\$3,069,082	\$16,937,786
	Percent	55.63%	18.12%	

ENGI Revenue Lag Calculation

Late Payments Total Revenue	NG Check Charge	Reconnect Fees	Unbilled Revenues	Transportation Revenues	Sales Revenue	Collections Lag	Billing Lag	Service Lag
<u>\$1,044,760</u> \$164,081,379	\$21,675	\$298,420	\$310,864	\$4,611,850	\$157,793,810			Revenues
<u>40.36</u> 49.12	40.36	49.18	49.18	49.18	49.18	32.96	1.00	Lag <u>Days</u> 15.22
<u>\$42,166,514</u> \$8,060,116,263	\$874,803	\$14,676,296	\$15,288,292	\$226,810,783	\$7,760,299,576			Weighted Dollar <u>Days</u>

ENGI Net Lag Calculation-Delivery Service

		Lag (Lead)	Weighted Dollar
Total Dayson Los	Revenues(Expenses)	Days 40.42	<u>Days</u>
Total Expense Lead	\$164,081,379	37.42	\$6,139,925,202
Total Net Lag Cash Working Capital-Total Rev Rqts Daily CWC-Total Rev Rqts		11.70	\$1,920,191,060 \$5,260,797
Supply-Related Net Lag Supply Cost Daily CWC-Supply-Related		10.18	\$133,114,231 \$3,713,586
Daily CWC-Total Rev Reqts Less Daily CWC-Supply-Related Daily CWC-Delivery Service			\$5,260,797 <u>\$3,713,586</u> \$1,547,211
Delivery-Related Net Lag		18.24	

National Grid NH's Responses to Staff Set 4

Date Request Received: October 7, 2008

Request No. Staff 4-1

Date of Response: October 22, 2008

Witness: Gary Goble

REQUEST:

Ref. ENGI Response to OCA 2-62(c). The Company's response indicates that the historical series of mains extension investment dollars provided in Attachment GLG-RD-3, page 7 of 37 (e.g., Column 8) are net of customer contributions in aid of construction. If so, please provide the historical series of annual customer contributions in aid of construction for the period 1988 through 2006. If not, please clarify the response to OCA 2-62(c).

RESPONSE:

Please see the table below for the contributions in aid of construction for new main extensions for the years 2001 through 2006.

Contributions in Aid of Construction for New Main Extensions

2001 2002		2003	2004	2005	2006	
\$350	\$310,765	\$1,193	\$10,510	\$6,564	\$2,986	

For the period 1988 through 2000, the marginal cost study in this case relied on distribution main extension investment data that was compiled for the study that was presented in EnergyNorth's revenue neutral rate redesign case. The current study merely updated the data series through 2006 using the same source, namely the investment data reported in the Company's Annual Returns to PUC that are net of customer contributions. For the 2001 through 2006 period, Company records that support the Annual Returns are readily available and provide the customer contribution data presented in the table above. However, the customer contribution data for the 1988 through 2000 period currently available to the Company was not retained in a way that allows the annual contribution figures to be easily discerned.

National Grid NH's Responses to Staff Set 4

Date Request Received: October 9, 2008

Request No. Staff 4-9

Date of Response: October 17, 2008

Witness: Gary Goble

REQUEST: Ref. Attachment GLG-RD-3, Page 6 of 37. Please explain the quantity 188,600 Dth at column 2, line 8. Is it the projected design day demand in Year 10, the average of the design day demands for Years 6-10, or some other amount? In addition, explain the amount \$2,898,250 at column 3, line 8. Is it the projected reinforcement cost in Year 10, the sum of the reinforcement costs for Years 6-10, or some other amount?

RESPONSE: The quantity 188,600 Dth at column 2, line 8 is the projected design day demand in Year 10; the amount \$2,898,250 at column 3, line 8 is the sum of the reinforcement costs for Years 6-10.

National Grid NH's Responses to Staff Set 4

Date Request Received: October 9, 2008

Request No. Staff 4-10

Date of Response: October 17, 2008

Witness: Gary Goble

REQUEST: Ref. Attachment GLG-RD-3, Page 6 of 37. Please provide the individual design

day demands and associated reinforcement costs for Years 6-10.

RESPONSE: The data is taken from the Company's network model. The planners enter data for

years 1 to 5 and for year 10. The model then identifies the necessary reinforcements. Individual data for years 6 through 9 are not available.

11/1/2005

Schedule JLH-4

Table 12 UNITIL ENERGY SYSTEMS MARGINAL COST ANALYSIS

Page 1 of 1

Summary of Long Run Marginal Costs

ine No.	Description	Domestic Sec	Small C&l Sec	Small C&I Pri	Large C&I Sec	Large C&I Pri	Total G2	Total G1	Total
					(4)				
1	CUSTOMER CHARGE Customer Charge \$'s per Month (1	\$11.94	\$19.85	\$25.18	\$85.57	\$53,46	\$19.87	\$ 75.18	
2	TIME VARYING CHARGES								
	Peak Demand Charge \$'s per CP KW (7	2) \$81.10	\$81.10	\$47.70	\$62.55	\$47,70	\$80.21	\$55.39	
•	Off Peak Demand Charge \$'s per CP KW (2		\$0.00	\$0.00	\$0.00	\$0.00			
6 7	ENERGY CHARGES								
		3) NA	NA	NA	NA	NA	NA	NA	
,		3) NA	NA	NA	NA	NA	NA	NA	
D		•							
1	BILLING DETERMINANTS								
3	Customers, Test Year Avg Monthly	61,546	10,056	39	101	48	10,094	149	71,79
4	Sales MWH	486,378	344,478	9,501	178,386	181,811	353,978	360,196	1,200,55
5	Sales - Period 2 MWH	0	0	0	0	0	0	0	
, •	Customer Max Demands	3,444,466	1,109,145	30,591	403,381	411,125	1,139,736	814,506	5,398,70
•	CP Demand - Firm, KW @ Meter	99,652	79,273	2,186	34,912	32,484	81,459	67,396	248,50
1	REVENUES RESULTING FROM FULL MARC	NAL COST BOL	CING						
22 23	Customer (1) * (18) * 12	\$8,818,517	\$2,395,236	\$11,633	\$103,451	\$30,901	\$2,406,869	\$134,352	11,359,73
N.	(1) (10) 12	\$0,010,517	42,330,230	3 11,033	\$105,451	430,301	3 2,400,003	\$134,332	11,303,13
5	0-5 10- 1 (0.405)	#0.000.404	*** *** ***	*101 805	*** *** ***	A. 540	0 0 500 047	** ***	
26 27	On Peak Demand (4) * (25) Off Peak Demand (5) * (25)	\$8,082,181	\$6,429,332	\$104,285	\$2,183,838	\$1,549,411	\$6,533,617	\$3,733,249	18,349,04
1	Total Demand	\$8,082,181	\$6,429,332	\$104,285	\$2,183,838	\$1,549,411	\$6,533,617	\$3,733,249	18,349,04
29									
36 31	On Peak Energy (7) * (19)	NA	NA	NA	NA	NA	\$0	\$0	
32	Off Peak Energy (8) * (20)	NA	NA	ΝA	NA.	NA NA	\$0	\$ <u>0</u>	
33	Total Energy	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
34	•,								
	Total Marginal Cost Based Revenue Regime	16,900,698	8,824,568	115,918	2,287,289	1,580,312	\$8,940,486	\$3,867,601	29,708,78
	ES:								
	Source: Table 11, line (32)/12								
	Source: Table 9, page 2.								
	Source: Table 10, page 1.	d based on sum :	d revenues for	econdani and	nriman, cuetom	ore			
4	Unit costs for Total C&I classes back-calculate	d based on sum o	f revenues for	secondary and	primary custom	ers.			